4,397 research outputs found

    Intrinsic gap and exciton condensation in the nu_T=1 bilayer system

    Full text link
    We investigate the quasiparticle excitation of the bilayer quantum Hall (QH) system at total filling factor νT=1\nu_{\mathrm{T}} = 1 in the limit of negligible interlayer tunneling under tilted magnetic field. We show that the intrinsic quasiparticle excitation is of purely pseudospin origin and solely governed by the inter- and intra-layer electron interactions. A model based on exciton formation successfully explains the quantitative behavior of the quasiparticle excitation gap, demonstrating the existence of a link between the excitonic QH state and the composite fermion liquid. Our results provide a new insight into the nature of the phase transition between the two states.Comment: 4 pages, 3 figure

    Non-equilibrium transport through a vertical quantum dot in the absence of spin-flip energy relaxation

    Full text link
    We investigate non-equilibrium transport in the absence of spin-flip energy relaxation in a few-electron quantum dot artificial atom. Novel non-equilibrium tunneling processes involving high-spin states which cannot be excited from the ground state because of spin-blockade, and other processes involving more than two charge states are observed. These processes cannot be explained by orthodox Coulomb blockade theory. The absence of effective spin relaxation induces considerable fluctuation of the spin, charge, and total energy of the quantum dot. Although these features are revealed clearly by pulse excitation measurements, they are also observed in conventional dc current characteristics of quantum dots.Comment: accepted for publication in Phys. Rev.Let

    Charge qubits and limitations of electrostatic quantum gates

    Full text link
    We investigate the characteristics of purely electrostatic interactions with external gates in constructing full single qubit manipulations. The quantum bit is naturally encoded in the spatial wave function of the electron system. Single-electron{transistor arrays based on quantum dots or insulating interfaces typically allow for electrostatic controls where the inter-island tunneling is considered constant, e.g. determined by the thickness of an insulating layer. A representative array of 3x3 quantum dots with two mobile electrons is analyzed using a Hubbard Hamiltonian and a capacitance matrix formalism. Our study shows that it is easy to realize the first quantum gate for single qubit operations, but that a second quantum gate only comes at the cost of compromising the low-energy two-level system needed to encode the qubit. We use perturbative arguments and the Feshbach formalism to show that the compromising of the two-level system is a rather general feature for electrostatically interacting qubits and is not just related to the specific details of the system chosen. We show further that full implementation requires tunable tunneling or external magnetic fields.Comment: 7 pages, 5 figures, submitted to PR

    Relativistic Beaming and Flux Variability in Active Galactic Nuclei

    Get PDF
    We discuss the impact of special relativistic effects on the observed light curves and variability duty cycles of AGNs. We model the properties of AGN light curves at radio wavelengths using a simulated shot noise process in which the occurrence of major flaring events in a relativistic jet is governed by Poisson statistics. We show that flaring sources whose radiation is highly beamed toward us are able to reach very high flux levels, but will in fact spend most of their time in relatively low flaring states due to relativistic contraction of flare time scales in the observer frame. The fact that highly beamed AGNs do not return to a steady-state quiescent level between flares implies that their weakly beamed counterparts should have highly stable flux densities that result from a superposition of many long-term, low-amplitude flares. The ``apparent'' quiescent flux levels of these weakly beamed AGNs (identified in many unified models as radio galaxies) will be significantly higher than their ''true'' quiescent (i.e., non-flaring) levels. We use Monte Carlo simulations to investigate flux variability bias in the selection statistics of flat-spectrum AGN samples. In the case of the Caltech-Jodrell Flat-spectrum survey, the predicted orientation bias towards jets seen end-on is weakened if the parent population is variable, since the highly beamed sources have a stronger tendency to be found in low flaring states. This effect is small, however, since highly beamed sources are relatively rare, and their fluxes tend to be boosted sufficiently above the survey limit such that they are selected regardless of their flaring level. We find that for larger flat-spectrum AGN surveys with fainter flux cutoffs, variability should not be an appreciable source of selection bias.Comment: Accepted for publication in the Astrophysical Journa

    Non-markovian dynamics of double quantum dot charge qubit with static bias

    Full text link
    The dynamics of charge qubit in double quantum dot coupled to phonons is investigated theoretically. The static bias is considered. By means of the perturbation approach based on unitary transformations, the dynamical tunneling current is obtained explicitly. The biased system displays broken symmetry and a significantly larger coherence-incoherence transition critical point αc\alpha _{c}. We also analyzed the decoherence induced by piezoelectric coupling phonons in detail. The results show that reducing the coupling between system and bath make coherence frequency increase and coherence time prolong. To maintain quantum coherence, applying static bias also is a good means.Comment: 13 pages, 5 figure

    Allowed and forbidden transitions in artificial hydrogen and helium atoms

    Full text link
    The strength of radiative transitions in atoms is governed by selection rules. Spectroscopic studies of allowed transitions in hydrogen and helium provided crucial evidence for the Bohr's model of an atom. Forbidden transitions, which are actually allowed by higher-order processes or other mechanisms, indicate how well the quantum numbers describe the system. We apply these tests to the quantum states in semiconductor quantum dots (QDs), which are regarded as artificial atoms. Electrons in a QD occupy quantized states in the same manner as electrons in real atoms. However, unlike real atoms, the confinement potential of the QD is anisotropic, and the electrons can easily couple with phonons of the material. Understanding the selection rules for such QDs is an important issue for the manipulation of quantum states. Here we investigate allowed and forbidden transitions for phonon emission in one- and two-electron QDs (artificial hydrogen and helium atoms) by electrical pump-and-probe experiments, and find that the total spin is an excellent quantum number in artificial atoms. This is attractive for potential applications to spin based information storage.Comment: slightly longer version of Nature 419, 278 (2002
    • …
    corecore